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Definition -

To fix the ideas, in what follows with the term

Real-Time State Estimation — RTSE

we make reference 1o the process of
estimating the network state (i.e., phase-to-
ground node voltages) with an exiremely high
refreshing rate (typically of several tens of
frames per second) enabled by the use of
synchrophasor measurements.



Potential applications of RTSEin ADNs |l
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Potential applications of RTSEin ADNs |l
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Potential applications of RTSEin ADNs |l
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Infroduction to the SE algorithms |

One of the challenging tasks related to the real-time control of
modern Power Systems - development of fast (i.e. sub-second)
State Estimation (SE) processes 2> major advantages associated to
the use of Phasor Measurements Units.

= Delays:

= Synchrophasor estimation (finite window length fo infer a
measurement)

= Telecom
= Measurement concentration and data retrieve from a Data Base
= State Estimation algorithm itself.

= The calculation of the system states is accomplished by solving a
minimization problem by using, for instance:

= Static algorithms (i.e. based on Weighted Least Squares (WLS), or

= Recursive algorithms (i.e. based on Kalman Filter (KF) methods).

= In a first step, we consider the case of balanced networks.
Therefore, we make reference to the direct sequence only. In the
second half of the lecture, we will consider unbalanced systems.



Infroduction to the SE algorithms |

= Static SE: infers the system state by using only current tfime
information (e.g., Weighted Least Squares — WLS — method).
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The Weighted Least Squares (WLS) -
method

Static SE refers to the procedure of inferring the system state, given
by the phase-to-ground voltage phasors at all system buses at a
given point in time and is expressed by the Weighted Least Squares
(WLS) method.

In this first development, we will approach the SE problem from its
basics avoiding a too-compact formalism.

For a system that has s buses, the system state vector has (2s-1)
elements, namely s bus voltage magnitudes V' and (s-1) voltage
phase angles 0. The angle of the slack bus is chosen to be the

reference angle and is set to a fixed value, in general, equal to 0.
Therefore, the network state vector x € R*™ is a follows:

X =[8,,.00,. V0V | ()



The Weighted Least Squares (WLS) -
method

Theoretical background:

The main goal of SE is to compute the most likely system state, based
on some measured quantities. A way to do this is by using the maximum
likelihood estimation (MLE) method, where the measurement errors are
assumed to have a known probability distribution.

When the system state is chosen so that it is closest to the real one, the
likelihood function attains its peak value. Therefore, an optimization
problem must be solved, and the solution provides the maximum

likelihood estimates for the system state.
STANDARD DEVIATION OF THE MEAN

In WLS-type state estimators,
the measurement errors are
assumed to have a Gaussian (normal)

distribution. The parameters that are used g Syreer yp L=

are the mean, ¢ and the variance o2,




The Weighted Least Squares (WLS) -
method

We assume that the normal probability density function (p.d.f.) of a

generic measurement z; is defined as:
1z,

f(z)= J_l e_z( 3 =N(u,07) 2).

2m7i

The joint p.d.f. /. (z) is expressed as the product of the individual

probability density functions, given that each measurement is assumed
to be independent of the others. All the measurements are assumed to
have a Gaussian-type p.d.f.

1.(2)=f(2)f(2,)...f(z,) (3)

Where z; is the i measurement, m is the total number of
measurements and:

7 =[zzz,] "



The Weighted Least Squares (WLS) -
method

The function f,(z) expresses the probability of observing the specific set of
measurements in the measurements array z. After linking f,(z) with the system
state, the objective of MLE is to maximize f,(z) by varying the unknown system

state. The p.d.f. can be replaced by its logarithm, as in this way the
optimization procedure has a convex objective function. The so-called Log-

Likelihood Function L is given by:

L=log f,(2)= Y log f(z) =

| 2 (5).
| z.— U m o

—— L | ——log2mr— ) logo,

[ ] ; log2m =3 logo,

MLE will maximize function L for a given set of measurements :z .z ,....z :

maximize log f (z)

OR (6).

2
. |z — U
minimize Z : :

X



The Weighted Least Squares (WLS) -
method

Equation (6) does not contain explicitlly the system state. In order o
express this link, it can be formulated as a function of the residual 7; of

measurement i, which is defined as:
=2, H; (7).

The mean u; can be expressed as 4(X): a non-linear function relating

the system state vector x to the i measurement (in what follow A4(X)
will be called measurement function). The square of each residual I;Z IS
weighted by W, = ojz and, as a consequence, equation (6) can be re-
written as follows:

m
minimize 2 Wl.l.rl.2
X
i=1

8).
subjectto z. =A(x)+r, i=1,...,m 18)



The Weighted Least Squares (WLS) -
method

By solving the above problem, the WLS estimator for X can be obtained.
The WLS estimator will minimize the following objective function:

(7)

whereR = diag(af,aj,...,ai)is the so-called measurement noise covariance
matrix.

In order to clarify the meaning and the role of the measurement function

h(x) in SE, in the following slides the formulation of A(X) is given for the
case where the measurements consist of power injections, line power
flows, line current flow magnitudes and bus voltage phasors.

The next task is to write the measurements as a function of the system
state.




The Weighted Least Squares (WLS) -
method — The non-linear case

The formal approach and the algorithm
Let’s assume that at a given point in fime defined by the time-step index ¢,

the set of measurements z is linked to the system state x by means of @
nonlinear function A:

zZ, = h(X;)"'V;

where v is the measurement noise, assumed to be white and with a normal
probability distribution of covariance R.

The aim of the WLS estimator is the minimization of the following objective
function:

J,=z,- h(xt)]T R:'[z,~h(x,)]

If R= diag(af,azz,...,az) .

m




The Weighted Least Squares (WLS) -
method — The non-linear case

At the minimum, the first-order optimality conditions will have to be satisfied.
These can be expressed in compact form as follows:
aJ(Xt) ah(x )
A\ Tl (z -1 e _ . ~\ t
g(Xt) - aXt A =H (Xt)Rr [Zt h(xz)] 0 where: H(Xt) = X

2 t

X,

We may expand the non-linear function g(x) (that must be null in view of the
above) into its Taylor series around the state vector:

gx) =g(x) +G(x)(x—X) +--=0
where: R
~ . ag(xt) _ T o -1 ~ . . .
G(x,) = 3% | = H" (x,)R; "H(X;) G is called the so-called gain matrix.
t

By combining the previous expressions we get the following iterative process
(where k indicates the generic iteration of the process):

H' it,k)Rt_l [Zz —h (it,k )] B G(ﬁt,k)(it,kﬂ B iz,k) =0

=& [GEO] (3R 2, - n(%)]




The Weighted Least Squares (WLS) -
method — The non-linear case

Let consider a balanced elecirical network, let define (Ziz)'1 as the
generic element of the network admittance martix:

(Z)' =G, +jB, (10).

We remind that the actfive and reactive power injection, Pl-nj and Ql-nj
equations of 4(X) at bus i can be inferred from the load flow problem:

B = izGii +V, EVe (G, cosd, +B,sino,)
¢=1
(=i (‘| ] )
Qi - _I/izBii + Vz E Ve (Gié sin 51'5 B Bie COS 5iz)
¢=1

(#1

where 0,=0 -0, isthe angle difference between voltage phasors
of buses i and 4



The Weighted Least Squares (WLS) -
method — The non-linear case

We also remind the expressions of active and reactive power flows Pﬂow,
Qjiow from bus i to bus sare:

P =V(g,+g,)-VV (g, cosd, +b, sind,)
Q,=-V(b,+b,)-VV (g, sind,-b, cosd,) (12)

where g;jb,, is the admittance of the series branch composing the -
equivalent line connecting buses i and £ and g1+jb,; is the admittance

of the shunt branch connected to bus i.

The line current flow magnitude 1,,,,,, from bus i to bus ¢ is simply:

2 2
J = \/Pzz T, (13).
14 Vl




The Weighted Least Squares (WLS) -

method — The non-linear case

Let us assume that the
measurements are:

Z = [Pinj,Pflow,Qinj,Qflow,: Inans Vimag, » 5]

It is worth observing the inherent
non-linear nature of A(X).

Therefore, In order to re-
formulate the optimal problem
stated by (6) or (8) as an iterative
convex optimisation problem,
there is the need of linearizing

h(X). The linearized version of
h(x) is indicated as H.

0P, OB,
00 14
aPﬂow aPﬂOW
00 oV
aQinj an’nj
00 14
00,,, 90,4,
00 14
00 14
00 oV
00 00
a6 o

(14).



The Weighted Least Squares (WLS) -

method — The non-linear case

The partial derivatives that
correspond to the active
power injections are:

The partial derivatives that
correspond to the reactive
power injections are:

0P < :
852- ) ZV’VZ (_Gie SIn 6;'@ + Bie cOs 5”) B KZBii
oP -
L = I/ZI/K (Gié Sin 5% - Bi€ COS 51'5)

p (15).
0P < :
a—Vli = ZI/Z(GM COS 61'6 + Bié S1n 6,'@) + I/iGii
oP '
aVlg - Vi(Gie COS(SM + Bié Sin 6”)
aQi S . 2
(9(5,- ) ;VIVZ (Giz CoS 5iz + Bié Sin 5”) B V’ Gﬁ
00, :

2= ,(-G, 080, - B,sind,)
7 (16).
00 X :
T = ;VZ(GM sind, — B cosd,)-V B,
310)

=V (G,sin8, - B, cosd,)
v, oo



The Weighted Least Squares (WLS) -

method — The non-linear case

The partial derivatives that
correspond to the active
power flows are:

oP -
a—(; B ViVé(gig Sin 61'@ B bié COSéﬂ)

oP :
a_éf:—ViVe(gizsmdM—bizcoséw) (17).
j

oP :

a—Vlf =-V, (giz COSéiz + biz Sin 5iz) + 2(gié + gsi)V;
P '

L - 050, 500

90 -
e -y (8, 0080, +b,sin0,)

The partial derivatives that
correspond to the reactive

power flows are:

aQM = ViVe(glyz COS 51'4 + bif Sin 5i‘)
< (18).

10) .

a%g - _Ve (gie S1n (Sie - biz CoS 61‘6) - 2(bff + bSi)Vi
00 .
o~ 1 (g, 5ind, ~b,cos0,)

¢



The Weighted Least Squares (WLS) -

method — The non-linear case

The partial derivatives that
correspond to the current
magnitudes (if the shunt
admittance of the branch
is ignored) are:

Finally, the partial
derivatives that correspond
to the voltage magnitudes
and the voltage phases
provided by PMUs are:

, _

[ g +b
Uy ¥y Gins,
861' 114 l l
I “+ b’
Uy ¥l yy ne,
aéé 14 l l
o g +b’
v - St (V. =V, cosd,)
ov, I, l
o g +b
e - St (V, -V cosd,)
v, I .
oV 514 oV
0 —=0 —=1 —L=
39, V. v,
N T R T
90 oV 514

(19).

0
(20).



The Weighted Least Squares (WLS) -
method — The non-linear case

The iterative algorithm for the non-linear case

1. Initialize the state vector x?, typically as a ‘flat-start’ (all bus voltages are
assumed to be 1 per unit (pu) and in phase with each other);

Iteration loop (index k)

Calculate the nonlinear function A(x%) and the matrix H(fcf)

Calculate the so-called “Gain matrix” G(X') and the function g(Xf) ;

Calculate fgf*l — ﬁf +[G(f(f)]_1 H (fif)R'l [Zz _ h(ik):l

t t

o~ W D

Calculate J(f(f) and stop if the following conditions are satisfied:

S Akl Ak
« Condition 1: max‘xﬁ —xt‘sgl

. Condition 2: ‘J (%)= (%)

- Condition 3: J(if*l)<g3

<82

where ¢, &, and g; are a-priori selected thresholds.



The Weighted Least Squares (WLS) -
method — The linear case

Let us now suppose that the measurements consist of phasors of bus
phase-to-ground voltages and phasors of nodal current injections.

Of course, these measurements are provided by PMUs and are, also,
synchronous (i.e., they are time-tagged using the UTC time reference).

The system state is always given by the equation (1) but, in order to
simplify the problem, we rewrite the system state in rectangular

coordinates:

(21).

T
[ Lre? " 2" s,re??" 1im?"""? s,im]

X =

Note that, as for the non-linear case, if the slack bus is assumed to be the
reference, it corresponds to have



The Weighted Least Squares (WLS) -
method — The linear case

We assume that the measurements come only from PMUs. Therefore,
the measurement set is composed of:

" d, phase-to-ground voltage phasors
" d, nodal-injected current phasors.

We also assume that the d,+d, > s do that the network is observable.

Note that the concept of observability has not been defined.
In this case, the set of measurements is a m = 2d,+2d, array:
77 = |:ZV’ZI:| (22)

where:
(23).

N
Il

1 [ll,re""’]dz,re’ l,im""’[dz,im:I



The Weighted Least Squares (WLS) -
method — The linear case

Let us now see a more compact form of the SE problem. The
equation linking the measurements with the system state can be also
written as:

z=Hx+v (24)
where:

= His am x 2s matrix representing the measurement Jacobian (*)
which connects the state with the measurements for the case of
null measurement noise;

" vis the measurement noise.

(*) Qbservation: in this case, it might be improper to call this matrix a
‘Jacobian’ since it is a constant and state-independent matrix.




The Weighted Least Squares (WLS) -
method — The linear case

Also in this case, we assume that the measurement noise is white
and Gaussian and the measurement errors are independent. So, we
get:

p(v) ~ N(O,R) (25)
R = diag(Of,...,Gi) (26)

where R is the so-called measurement noise covariance matrix
andog; (i=1,..., m)is the standard deviation of the it

measurement. Therefore, R represents the accuracies of the
measurement devices.



The Weighted Least Squares (WLS) -

method — The linear case

IMPORTANT OBSERVATION: the real and imaginary part of the nodal
current injections are linked to the system state directly via the
admittance matrix:

Ii,re - S(Giél/é,re - BieVe,im)
1 (27)

I = (GV +BV )

¢ {¢,im e (,re

where:
= 7 s the bus index;

" (;,and B, are the real and imaginary parts of the ivadmittance
matrix elements, respectively.



The Weighted Least Squares (WLS) -
method — The linear case

In this case, the measurements Jacobian H is equal to:

HV
H=| (28)

|

where:

= Hy is is the part of the Jacobian (*) that is related to the partial
derivatives of the real and imaginary part of the voltages as a
function of the state;

= H;is the part of the Jacobian (*) that is related to the partial
derivatives of the real and imaginary part of the injected currents
as a function of the state.

(*) Observation: as said before, it might be improper to call this
matrix a ‘Jacobian’ since it is a constant and state-independent
matrix.




The Weighted Least Squares (WLS) -
method — The linear case

Therefore, we have for Hy:

"
H,=| = . : 127)
_C_ _n_
(1if i=¢
p=i "1
0if i=¢
where- v=(=0

n={lqi55 (30).
0if i=¢




The Weighted Least Squares (WLS) -
method — The linear case

And for H;:

| -Gie: [_Bie] |

8] 6] o




The Weighted Least Squares (WLS) -
method — The linear case

As it is evident, the link between the system state and the
measurements is linear.

As a consequence, the SE process refers to the minimization of the
following quadratic objective function:

m (Zi _EHZI'XJ') (32).

-3

i

The minimum of this objective, as a function of the state X, can be
analytically computed as:

x=G'H'R'z
with (33).
G=H'R'H



The Weighted Least Squares (WLS) -
method — Bad Data Processing

Bad data issue

Measurements can contain errors due to instrumentation
malfunction, incorrect sensor compensation, telecommunication
system failures, user misinterpretations...

The presence of erroneous measurements can be detected by
analyzing the normalized measurement estimation residual vector.

The residuals r are expected to be Gaussian distributed: ri~ N (0, Q;;),
with:
r =z — HX
Q = cov(r) =R —HG 'HT



The Weighted Least Squares (WLS) -
method — Bad Data Processing

Largest normalized residual (LNR) test

1. Solve the WLS problem and compute the estimation residuals:
Ti=Zi—H5C\i 1= 1,..,m

2. Compute the normalized residuals:

riN= il 1= 1,..,m
Q4
3. Find the largest normalized residual:
rll\l=miaxriN i=1,..,m

4. 1f ) > c the kih measurement is suspected to be bad data. ¢ is the
user defined identification threshold, e.g. 3.0

5. Eliminate the k' measurement and go to step 1



The Weighted Least Squares (WLS) -

method — Bad Data Processing
Strengths and limitations of the LNR test

The LNR test will perform differently depending upon the type of bad
data and their configuration

= Single bad data: only one measurement with a large error.

The LNR will correspond with the bad data provided that it is not
critical or its removal does not create a critical measurement.

N.B. a critical measurement is a measurement that makes the
network unobservable when removed.

= Multiple bad data: more than one measurement with large error
= |f the residuals are weakly correlated: Q;;, = 0, the bad data is
non-interacting and easier to detect
= |f the residuals are strongly correlated: Q;, is significantly large,
we have consistent bad data that are more difficult to detect



The Kalman Filter (KF) method -

Recursive SE refers to procedures aiming at obtaining the system
state at a given time by taking info account information available
from both measurements and a process model. One of the typical
techniques adopted in this field is represented by the KF method.

There are more than one versions of the KF method. The Discrete
Kalman Filter (DKF) is used for linear systems, whereas the Extended
Kalman Filter (EKF) and the Ilterated Kalman Filter (IKF) are used
when the process to be estimated and/or the measurement
relationship to the process is non-linear. Since the equations for
each version are similar, let give the ones that describe the DKF.

The KF consists of a set of equations that implement a “predictor-
measurement update” process that minimizes the estimated error
covariance - provided that some specific conditions are met.



The Kalman Filter (KF) method -

The objective is to estimate the state x e R*"' of a discrete-time
conftrolled process, governed by the linear stochastic difference equation
that represents the process model:

X =Ax_ +Bu_+w_ (34)

where:
» x, and x,; represent the state of the system in correspondence of
discrete time steps t and ¢-1, respectively;

" u,; represents a set of u. contfrol variables (independent from the
system state) of the system at tfime step ¢ -1;

" w,,; represents the system process noise assumed white and with @
normal probability distribution;

= Ais a(2s-1)x(2s-1) matrix that links that state of the system at time step ¢-
1 with the one of the current time step ¢ for the case of null active
injections and process noise;

= B is a (2s-1) x u, matrix that links the time evolution of the state of the

system with the u. controls at tfime step ¢-1 for the case of null process
noise.



The Kalman Filter (KF) method -

The measurement array ze R" is given by the equation we have already
seen:

z =Hx +v, (35)
where:

= the mx(2s-1) matrix H represents the measurements Jacobian, as
defined before;

" v, represents the measurement noise at the same time step £ it is
assumed white and with a normal probability distribution. v, is also
assumed independent from w, (clearly, v € R"as z, does).

Similarly to the WLS, the variables v,and w, are assumed to have the
following normal probability distributions (the mean value u is equal to
Zero):

p(w)~N(0,0)

p(v) ~ N(0O,R) (36).



The Kalman Filter (KF) method -

The process covariance Q and measurement noise covariance R matrices
derived from (36) are assumed fto be constant. In practice, A might
change with each time step, but here it is assumed as constant.

Hence, we can define X, ER*™ as the “a priori” state estimate at step ¢
given knowledge of the process prior to step fand x, ER*" as the "“a

posteriori” state estimate af step 7 given the measurement array z,. The “a
priori” and “a posteriori” estimate errors can be defined as

ok

¢ =X, -X, (37).

t XZ‘ t

o>
[
>

The “a priori” estimate error covariance is

P =E[é&’]
t tt (38)



The Kalman Filter (KF) method -

The “a posteriori” estimate error covariance is

P =E[ée ] (39).

Note that in (38) and (39) [ indicates the expected or mean value
operator.

The next objective is to find an equation that calculates the “a posteriori”
state estimate X, as a linear combination of an “a priori” estimate X, and
a weighted difference between the actual measurement array z, and the
measurement prediction Hx, .

X =X +K(z, -HX) (40).

The difference (z, -HX)) is called measurement innovation, or
“measurement residual” and expresses the discrepancy between the
predicted measurement Hx and the actual measurement array z,.



The Kalman Filter (KF) method -

The (2s-1) x m matrix K in (40) is called “Kalman Gain” or “blending factor”
and it minimizes the “a posteriori” error covariance Pt . It is calculated as:

K =PH' (HPH' +R)” (41).

The KF method estimates a process by using a kind of feedback: firstly, it
estimates the process state at some time and then obtains a feedback in
the form of (noisy) measurements. The KF equations are therefore divided
iINn tWO groups:

« fime-update equations and
« measurement-update equations.

The time-update equations are responsible for projecting forward (in fime)
the current state and error covariance estimates in order to obtain the “a
priori” estimates for the next time step, whereas the measurement-update
equations are responsible for the feedback, namely for the incorporation
of new measurements info the “a priori” estimate so as to obtain an
improved “a posteriori” estimate.




The Kalman Filter (KF) method -

= DKF time update equations (“prediction”):
X =AXx _ +Bu_ (42)

D 4 T
P=AP_ A"+Q _ (43).

= DKF measurement update equations (kind of “correction of the

estimation”): 3 .
K = PtHT (HPIHT +R)™
(44)
X =X +K (z, -HXx))
(45)
P =(I-K H)P 40

where 1 is the identity matrix.



Example of DKF-based SE (linear) [N

Since we are targeting ADNSs, it is worth reminding that the
peculiar characteristics of these networks (e.g., high level
of imbalance of lines, loads, and Distributed Generators)
require the adoption of 3-phase unbalanced SE process.
Moreover, the Discrete Kalman Filter (DKF)-SE here
described relies only on measurements provided by PMUs
that, as above-mentioned, enable to obtain a

measurement matrix H consisting of constant elements,

namely: zeros, ones, and elements of the 3-ph compound
admittance matrix of the network.



Example of DKF-based SE (linear) [N

PMUs can measure both nodal voltage and injected
current synchrophasors. If this is the case, it is possible
to take advantage of the linear dependence
between the network state (nodal voltages) and the
measured injected currents, when the equations are
written in rectangular coordinates.

The system state for a network with s buses can be
expressed in rectangular coordinates as:
T
x= ViV VeV )

where

‘fiaif’c = -I/icjfe’l/ibre’l/icre]
e Lbreriren (48).

yebe Zlya pe

i1,im 1,im 1,im i1,im ]




Example of DKF-based SE (linear) [N

HP: measurements coming only from PMUs - the
measurement set is :

3d, phase-to-ground voltage phasors;
3d, injected current phasors;

Remark: the observability constraints are not
discussed here (in any case, 2d,+2d, > 2s).
The measurement set z is:

z= [ZV’ZI ]T (49)

where
a,b,c a,b,c a,b,c ab,c
2, =| Vi Ve Ve Ve |

dyre? " lim 2" " d im

Ia,b,c Ia,b,c Ia,b,c Ia,b,c ] (50) .

ZI =[ Lre 2°°°7d,re®> " Lim >°""27d, im



Example of DKF-based SE (linear) [N

As we have seen, the real and imaginary part of the
nodal current injections are linked to the system state
directly via the admittance matrix:

S

]z',re E(GzeVz re BwVe lm)

Past (27)

N

o= 2O B )

(=1

where;
7 s the bus index;

" G;,and B;,are the real and imaginary parts of the iz
admittance matrix elements, respectively.



Example of DKF-based SE (linear) [N

For the case the measurements are composed of nodal
voltages and nodal-injected/absorbed currents, the
measurements function H is constant and exact:

H= ' Past (28)

where:

= H, is the part of the measurement function H that is related to
the link between the real and imaginary parts of the voltages as
a function of the state;

= H;is the part of the measurement function H that is related to the

partial derivatives of the real and imaginary part of the injected
currents as a function of the state.



Example of DKF-based SE (linear) [N

(1if i=¢ _ _
0if i G.] [-8.]

wherey  v=£=0 | [8] 6]

lif i=¢ ' '
0if i=¢

S
Il
—

Past (29)-(31)



Example of DKF-based SE (linear) [N

ra i

Prediction Equations Estimation Equations
Prediction of the state: (1) Computation of the Kalman
X =AXx +Bu Gain: A |
o -1 -1 Kt = PtH (HPtH +R)_
Pt = APHAT + Qt_1 (2) Estimation of the state
f(f =X, +Kt(zt - HXx )
P = (I- KtH)Pt

where:

« P :prediction error covariance matrix ;
- K :"Kalman gain”;

Za

« P :estimation error covariance matrix ;



Example of IKF-based SE (non—linedr)-

In order to provide an example, let us now suppose to have two
types of measurements:

" type-d; nodes where phase-to-ground voltage phasors are
measured directly by means of PMUs;

" type-u; nodes where active and reactive power injections are
measured, so that d,+u; > s.



Example of IKF-based SE (non—linedr)-

The resulting measurement array z, is therefore:

d
Z“1
A

u
z1
A

Z= 5 ,6d, .,le,ﬁ,...,QI,QI,...,le
0P oP
inj inj
00 oV
It is worth noting that is has 9P 9P
deliberately been disregarded the f(’;’w flow
problem of network observability H - dJ v
since it is out of the scope of this =99, 90,
section. For sake of simplicity the 90 14
measurement Jacobion H s 9, 00,
formulated as: 90 14
magn magn
| 00 Vv |

(51).




Example of IKF-based SE (non—linedr)-

The (2d;-1)x(2s-1) sub-matrix T, that is composed of the rows of the (2s-1)
identity matrix corresponding to the type-d, nodes, allows linking the first part of
the measurement array zfl to the system state variables:

dl
= TXt + Vt (53) .
where V represents the array of uncer’rom’rles of the state variables, measured
by the PMUs Therefore: A
T
Zt = Hul Xt +Vt (54)
dl
and vV = \f! (55).
t Vl;l

Due to the combination of conventional power measurements and PMU
measurements the SE provides, in general, more accurate results. However, it is
important to point out that the number and the location of the measurement
devices has a strong impact on the SE resulis.




