
Course
Smart grids technologies
Power Systems state estimation

Prof. Mario Paolone
Distributed Electrical Systems Laboratory
École Polytechnique Fédérale de Lausanne (Switzerland)

Electrical and Electronics 
Engineering

2024-2025
Master Semester 2



Definition

To fix the ideas, in what follows with the term

Real-Time State Estimation – RTSE

we make reference to the process of 
estimating the network state (i.e., phase-to-
ground node voltages) with an extremely high 
refreshing rate (typically of several tens of 
frames per second) enabled by the use of 
synchrophasor measurements.
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Potential applications of RTSE in ADNs
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One of the challenging tasks related to the real-time control of 
modern Power Systems à development of fast (i.e. sub-second) 
State Estimation (SE) processes à major advantages associated to 
the use of Phasor Measurements Units.
§ Delays:

§ Synchrophasor estimation (finite window length to infer a 
measurement)

§ Telecom
§ Measurement concentration and data retrieve from a Data Base
§ State Estimation algorithm itself.

§ The calculation of the system states is accomplished by solving a 
minimization problem by using, for instance:

§ Static algorithms (i.e. based on Weighted Least Squares (WLS), or
§ Recursive algorithms (i.e. based on Kalman Filter (KF) methods).

§ In a first step, we consider the case of balanced networks. 
Therefore, we make reference to the direct sequence only. In the 
second half of the lecture, we will consider unbalanced systems.

Introduction to the SE algorithms



Introduction to the SE algorithms
§ Static SE: infers the system state by using only current time 

information (e.g., Weighted Least Squares – WLS – method).

§ Recursive SE: takes into account information available from 
previous time steps and predict the state vector in time (e.g., Kalman 
Filter – KF – method).
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Static SE refers to the procedure of inferring the system state, given 
by the phase-to-ground voltage phasors at all system buses at a 
given point in time and is expressed by the Weighted Least Squares 
(WLS) method.

In this first development, we will approach the SE problem from its 
basics avoiding a too-compact formalism.

For a system that has s buses, the system state vector has (2s-1) 
elements, namely s bus voltage magnitudes V and (s-1) voltage 
phase angles δ. The angle of the slack bus is chosen to be the 
reference angle and is set to a fixed value, in general, equal to 0. 
Therefore, the network state vector x   is a follows:

                (1)

The Weighted Least Squares (WLS) 
method

x = δ2 ,...,δs ,V1,...,Vs⎡⎣ ⎤⎦
T

∈ !2s−1



Theoretical background:

The main goal of SE is to compute the most likely system state, based 
on some measured quantities. A way to do this is by using the maximum 
likelihood estimation (MLE) method, where the measurement errors are 
assumed to have a known probability distribution. 

When the system state is chosen so that it is closest to the real one, the 
likelihood function attains its peak value. Therefore, an optimization 
problem must be solved, and the solution provides the maximum 
likelihood estimates for the system state.

In WLS-type state estimators,
the measurement errors are 
assumed to have a Gaussian (normal) 
distribution. The parameters that are used 
are the mean, μ and the variance σ2.    

The Weighted Least Squares (WLS) 
method



We assume that the normal probability density function (p.d.f.) of a 
generic measurement zi is defined as:

                (2).

The joint p.d.f. fm(z) is expressed as the product of the individual 
probability density functions, given that each measurement is assumed 
to be independent of the others. All the measurements are assumed to 
have a Gaussian-type p.d.f.

                (3)

Where zi  is the ith measurement, m is the total number of 
measurements and:

               (4).

The Weighted Least Squares (WLS) 
method

f (zi ) =
1
2πσ i

e
−
1
2
zi−µi
σ i

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

! N (µi ,σ i
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    fm(z) = f (z1) f (z2 )… f (zm )

    
zT = z1,z2 ,…, zm

⎡⎣ ⎤⎦



The function  fm(z)  expresses the probability of observing the specific set of 
measurements in the measurements array z. After linking  fm(z)  with the system 
state, the objective of MLE is to maximize  fm(z)  by varying the unknown system 
state. The p.d.f. can be replaced by its logarithm, as in this way the 
optimization procedure has a convex objective function. The so-called Log-
Likelihood Function L is given by:            

                      (5).

MLE will maximize function L for a given set of measurements                    :

         (6).

The Weighted Least Squares (WLS) 
method

L = log fm(z) = log f (zi )
i=1

m

∑ =

− 1
2

zi − µi
σι

⎛

⎝⎜
⎞

⎠⎟i=1

m

∑
2

− m
2
log2π − logσ i

i=1

m

∑

  z1,z2 ,…,zm

maximize
x

   log fm(z)

            OR

minimize
x

    
zi − µi
σ i

⎛

⎝⎜
⎞

⎠⎟i=1

m

∑
2



Equation (6) does not contain explicitly the system state. In order to 
express this link, it can be formulated as a function of the residual ri of 
measurement i, which is defined as:

               (7).

The mean μi can be expressed as hi(x): a non-linear function relating 
the system state vector x to the ith measurement (in what follow hi(x) 
will be called measurement function). The square of each residual   is 
weighted by               and, as a consequence, equation (6) can be re-
written as follows: 

                  
                (8).

The Weighted Least Squares (WLS) 
method

ri = zi − µi

ri
2

Wii =σ i
−2

    

minimize
x

   Wiiri
2

i=1

m

∑
subject to  z i = hi (x)+ ri ,    i = 1,…,m



By solving the above problem, the WLS estimator for x can be obtained. 
The WLS estimator will minimize the following objective function:

                   (9)

where                                  is the so-called measurement noise covariance 
matrix.

In order to clarify the meaning and the role of the measurement function 
h(x) in SE, in the following slides the formulation of h(x) is given for the 
case where the measurements consist of power injections, line power 
flows, line current flow magnitudes and bus voltage phasors.

The next task is to write the measurements as a function of the system 
state.

The Weighted Least Squares (WLS) 
method

J (x) =
zi − hi (x)( )2
Riii=1

m

∑

R = diag σ1
2 ,σ 2

2 ,...,σm
2( )



The Weighted Least Squares (WLS) 
method – The non-linear case

z t = h(x t )+ v t

Jt = z t − h(x t )⎡⎣ ⎤⎦
T
R t

−1 z t − h(x t )⎡⎣ ⎤⎦

R = diag σ1
2 ,σ 2

2 ,...,σm
2( )

The formal approach and the algorithm
Let’s assume that at a given point in time defined by the time-step index t, 
the set of measurements z is linked to the system state x by means of a 
nonlinear function h: 

where v is the measurement noise, assumed to be white and with a normal 
probability distribution of covariance R.
The aim of the WLS estimator is the minimization of the following objective 
function: 

Jt =
zt ,i − ht ,i (x)( )

2

Rt ,iii=1

m

∑

If                                       : 



The Weighted Least Squares (WLS) 
method – The non-linear case
At the minimum, the first-order optimality conditions will have to be satisfied. 
These can be expressed in compact form as follows: 

g x̂ t( ) =
∂J x t( )
∂x t x̂

=HT x̂ t( )R t
−1 z t − h x̂ t( )⎡
⎣

⎤
⎦= 0 H x̂ t( ) =

∂h x t( )
∂x t x̂t

where:

We may expand the non-linear function 𝐠 𝒙  (that must be null in view of the 
above) into its Taylor series around the state vector:

where:

𝐆 $𝒙𝒕 =
𝝏𝒈 $𝒙𝒕
𝝏$𝒙𝒕

= 𝐇𝑻 $𝒙𝒕 𝐑𝒕#𝟏𝐇 $𝒙𝒕

𝐠 𝒙 = 𝐠 $𝒙𝒕 + 𝐆 $𝒙𝒕 𝒙 − $𝒙𝒕 +⋯ = 𝟎

G is called the so-called gain matrix.

By combining the previous expressions we get the following iterative process 
(where k indicates the generic iteration of the process):

HT x̂ t ,k( )R t
−1 z t − h x̂ t ,k( )⎡
⎣

⎤
⎦−G x̂ t ,k( ) x̂ t ,k+1 − x̂ t ,k( ) = 0

x̂ t
k+1 = x̂ t

k + G(x̂ t
k )⎡

⎣
⎤
⎦
−1
HT x̂ t

k( )R t
−1 z t − h x̂ t

k( )⎡
⎣

⎤
⎦



Let consider a balanced electrical network, let define          as the 
generic element of the network admittance martix:

                  (10).

We remind that the active and reactive power injection, Pinj and Qinj 
equations of h(x) at bus i can be inferred from the load flow problem:

                   (11)

where                       is the angle difference between voltage phasors 
of buses i and l.

The Weighted Least Squares (WLS) 
method – The non-linear case

(Zil )
−1 =Gil + jBil

(Zil )
−1

Pi =Vi
2Gii +Vi Vl

l=1
l≠i

s

∑ (Gil cosδil + Bil sinδil )

Qi = −Vi
2Bii +Vi Vl

l=1
l≠i

s

∑ (Gil sinδil − Bil cosδil )

δil = δi −δl



We also remind the expressions of active and reactive power flows Pflow, 
Qflow from bus i to bus l are:

 
                  (12)

where gil+jbil is the admittance of the series branch composing the π-
equivalent line connecting buses i and l and gsi+jbsi is the admittance 
of the shunt branch connected to bus i.

The line current flow magnitude Imagn from bus i to bus l is simply:

                  (13).

The Weighted Least Squares (WLS) 
method – The non-linear case

Pil =Vi
2 (gsi + gil )−ViVl (gil cosδil +bil sinδil )

Qil = −Vi
2 (bsi +bil )−ViVl (gil sinδil −bil cosδil )

Iil =
Pil
2 +Qil

2

Vi



Let us assume that the 
measurements are:

It is worth observing the inherent 
non-linear nature of h(x).

Therefore, In order to re-
formulate the optimal problem 
stated by (6) or (8) as an iterative  
convex optimisation problem, 
there is the need of linearizing 
h(x). The linearized version of 
h(x) is indicated as H.  

The Weighted Least Squares (WLS) 
method – The non-linear case

H =

∂Pinj
∂δ

       
∂Pinj
∂V

∂Pflow
∂δ

     
∂Pflow
∂V

∂Qinj
∂δ

      
∂Qinj
∂V

∂Qflow

∂δ
    

∂Qflow

∂V
∂Imagn
∂δ

     
∂Imagn
∂V

∂Vmagn
∂δ

   
∂Vmagn
∂V

  ∂δ
∂δ

        ∂δ
∂V

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(14).

𝐳 = 𝑃%&',𝑃)*+,,𝑄%&',𝑄)*+,,, 𝐼-./ , 𝑉-.0, , 𝛿



The partial derivatives that 
correspond to the active 
power injections are:

The Weighted Least Squares (WLS) 
method – The non-linear case

∂Pi
∂δi

= Vi
l=1

s

∑ Vl (−Gil sinδil + Bil cosδil )−Vi
2Bii

∂Pi
∂δl

=ViVl (Gil sinδil − Bil cosδil )

∂Pi
∂Vi

= Vl (Gil cosδil + Bil sinδil )+ViGii
l=1

s

∑

∂Pi
∂Vl

=Vi (Gil cosδil + Bil sinδil )

The partial derivatives that 
correspond to the reactive 
power injections are:

∂Qi
∂δi

= Vi
l=1

s

∑ Vl (Gil cosδil + Bil sinδil )−Vi
2Gii

∂Qi
∂δl

=ViVl (−Gil cosδil − Bil sinδil )

∂Qi
∂Vi

= Vl (Gil sinδil − Bil cosδil )−ViBii
l=1

s

∑

∂Qi
∂Vl

=Vi (Gil sinδil − Bil cosδil )

(15).

(16).



The partial derivatives that 
correspond to the active 
power flows are:

The Weighted Least Squares (WLS) 
method – The non-linear case

∂Pil
∂δi

=ViVl (gil sinδil −bil cosδil )

∂Pil
∂δ j

= −ViVl (gil sinδil −bil cosδil )

∂Pil
∂Vi

= −Vl (gil cosδil +bil sinδil )+ 2(gil + gsi )Vi

∂Pil
∂Vl

= −Vi (gil cosδil +bil sinδil )

The partial derivatives that 
correspond to the reactive 
power flows are:

∂Qil
∂δi

= −ViVl (gil cosδil +bil sinδil )

∂Qil
∂δl

=ViVl (gil cosδil +bil sinδil )

∂Qil
∂Vi

= −Vl (gil sinδil −bil cosδil )− 2(bil +bsi )Vi

∂Qil
∂Vl

= −Vi (gil sinδil −bil cosδil )

(17).

(18).



The partial derivatives that 
correspond to the current 
magnitudes (if the shunt 
admittance of the branch 
is ignored) are:

The Weighted Least Squares (WLS) 
method – The non-linear case

∂Iil
∂δi

=
gil
2 +bil

2

Iil
ViVl sinδil

∂Iil
∂δl

= −
gil
2 +bil

2

Iil
ViVl sinδil

∂Iil
∂Vi

=
gil
2 +bil

2

Iil
(Vi −Vl cosδil )

∂Iil
∂Vl

=
gil
2 +bil

2

Iil
(Vl −Vi cosδil )

Finally, the partial 
derivatives that correspond 
to the voltage magnitudes 
and the voltage phases 
provided by PMUs are:

∂Vi
∂δi

= 0    
∂Vi
∂δl

= 0    
∂Vi
∂Vi

=1    
∂Vi
∂Vl

= 0

∂δi
∂δi

=1    
∂δi
∂δl

= 0    
∂δi
∂Vi

= 0    
∂δi
∂Vl

= 0

(19).

(20).



The Weighted Least Squares (WLS) 
method – The non-linear case
The iterative algorithm for the non-linear case
1. Initialize the state vector x0, typically as a ‘flat-start’ (all bus voltages are 

assumed to be 1 per unit (pu) and in phase with each other);

Iteration loop (index k)

2. Calculate the nonlinear function h(xk) and the matrix                ;

3. Calculate the so-called “Gain matrix” and the function ;

4. Calculate                                                                                  ;

5. Calculate             and stop if the following conditions are satisfied:
• Condition 1: 

• Condition 2: 

• Condition 3: 

x̂ t
k+1 = x̂ t

k + G(x̂ t
k )⎡

⎣
⎤
⎦
−1
HT x̂ t

k( )R t
−1 z t − h x̂ t

k( )⎡
⎣

⎤
⎦

G(x̂ t
k ) g x̂ t

k( )
H x̂ t

k( )

J x̂ t
k( )

max x̂ t
k+1 − x̂ t

k ≤ ε1
J x̂ t

k+1( )− J x̂ tk( ) < ε2
J x̂ t

k+1( ) < ε3
where ε1, ε2 and ε3 are a-priori selected thresholds.



The Weighted Least Squares (WLS) 
method – The linear case
Let us now suppose that the measurements consist of phasors of bus
phase-to-ground voltages and phasors of nodal current injections.

Of course, these measurements are provided by PMUs and are, also, 
synchronous (i.e., they are time-tagged using the UTC time reference).

The system state is always given by the equation (1) but, in order to 
simplify the problem, we rewrite the system state in rectangular 
coordinates:

x = V1,re ,...,Vs,re ,,V1,im ,...,Vs,im⎡⎣ ⎤⎦
T

Note that, as for the non-linear case, if the slack bus is assumed to be the 
reference, it corresponds to have 

V1,im = 0

(21).



The Weighted Least Squares (WLS) 
method – The linear case
We assume that the measurements come only from PMUs. Therefore, 
the measurement set is composed of:
§ d1 phase-to-ground voltage phasors
§ d2 nodal-injected current phasors.

We also assume that the d1+d2 ≥ s do that the network is observable.

Note that the concept of observability has not been defined.

In this case, the set of measurements is a m = 2d1+2d2 array:

(22)zT = zV ,z I⎡⎣ ⎤⎦
where: zV = V1,re ,...,Vd1,re ,V1,im ,...,Vd1,im

⎡
⎣

⎤
⎦

z I = I1,re ,..., Id2 ,re , I1,im ,..., Id2 ,im
⎡
⎣

⎤
⎦

(23).



The Weighted Least Squares (WLS) 
method – The linear case
Let us now see a more compact form of the SE problem. The 
equation linking the measurements with the system state can be also 
written as:

(24)
where:
§ H is a m x 2s matrix representing the measurement Jacobian (*) 

which connects the state with the measurements for the case of 
null measurement noise;

§ v is the measurement noise.

(*) Observation: in this case, it might be improper to call this matrix a 
‘Jacobian’ since it is a constant and state-independent matrix.

z =Hx + v



The Weighted Least Squares (WLS) 
method – The linear case

(25)
    
p v( ) ∼ N 0,R( )

Also in this case, we assume that the measurement noise is white 
and Gaussian and the measurement errors are independent. So, we 
get:

R = diag σ1
2 ,…,σ m

2( ) (26)

where R is the so-called measurement noise covariance matrix
and σi  (i = 1 ,..., m) is the standard deviation of the ith
measurement. Therefore, R represents the accuracies of the
measurement devices.



The Weighted Least Squares (WLS) 
method – The linear case

(27)

IMPORTANT OBSERVATION: the real and imaginary part of the nodal 
current injections are linked to the system state directly via the 
admittance matrix:

Ii ,re = GilVl ,re − BilVl ,im( )
l=1

s

∑

Ii ,im = GilVl ,im + BilVl ,re( )
l=1

s

∑
where:
§ i  is the bus index;
§ Gil and Bil are the real and imaginary parts of the il admittance 

matrix elements, respectively.



The Weighted Least Squares (WLS) 
method – The linear case

(28)

In this case, the measurements Jacobian H is equal to:

 

H =
HV

HI

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

where:
§ HV  is  is the part of the Jacobian (*) that is related to the partial 

derivatives of the real and imaginary part of the voltages as a 
function of the state;

§ HI is the part of the Jacobian (*) that is related to the partial 
derivatives of the real and imaginary part of the injected currents 
as a function of the state.

(*) Observation: as said before, it might be improper to call this 
matrix a ‘Jacobian’ since it is a constant and state-independent 
matrix.



The Weighted Least Squares (WLS) 
method – The linear case

(29)

Therefore, we have for HV:

HV =
β⎡⎣ ⎤⎦ υ⎡⎣ ⎤⎦

ζ⎡⎣ ⎤⎦ η⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

where

β =
1 if  i = l
0 if  i ≠ l

⎧
⎨
⎩

υ =ζ = 0

η =
1 if  i = l
0 if  i ≠ l

⎧
⎨
⎩

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

(30).



The Weighted Least Squares (WLS) 
method – The linear case
And for HI:

(31).HI =
Gil⎡⎣ ⎤⎦ −Bil⎡⎣ ⎤⎦

Bil⎡⎣ ⎤⎦ Gil⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥



The Weighted Least Squares (WLS) 
method – The linear case
As it is evident, the link between the system state and the 
measurements is linear.

As a consequence, the SE process refers to the minimization of the 
following quadratic objective function:

(32).
J (x) =

zi − Hijx j
j=1

2s

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

Riii=1

m

∑

The minimum of this objective, as a function of the state x, can be 
analytically computed as:

x̂ =G−1HTR−1z
with
G =HTR−1H

(33).



The Weighted Least Squares (WLS) 
method – Bad Data Processing
Bad data issue

Measurements can contain errors due to instrumentation 
malfunction, incorrect sensor compensation, telecommunication 
system failures, user misinterpretations…

The presence of erroneous measurements can be detected by 
analyzing the normalized measurement estimation residual vector.

The residuals 𝐫 are expected to be Gaussian distributed: 𝑟!~𝒩(0, Ω!!), 
with:

𝐫 = 𝐳 − 𝐇.𝐱
𝛀 = cov 𝐫 = 𝐑 − 𝐇𝐆"#𝐇$



The Weighted Least Squares (WLS) 
method – Bad Data Processing
Largest normalized residual (LNR) test

1. Solve the WLS problem and compute the estimation residuals:
𝑟! = 𝑧! − 𝐇.𝑥! i = 1, . . , m

2. Compute the normalized residuals:

𝑟!% =
r!
𝛀!!

i = 1, . . , m

3. Find the largest normalized residual:
𝑟&% = max

!
𝑟!% i = 1, . . , m

4. If 𝑟&% > 𝑐 the kth measurement is suspected to be bad data. 𝑐 is the 
user defined identification threshold, e.g. 3.0 

5. Eliminate the kth measurement and go to step 1



The Weighted Least Squares (WLS) 
method – Bad Data Processing
Strengths and limitations of the LNR test

The LNR test will perform differently depending upon the type of bad 
data and their configuration

§ Single bad data: only one measurement with a large error. 
 The LNR will correspond with the bad data provided that it is not 

critical or its removal does not create a critical measurement.

 N.B. a critical measurement is a measurement that makes the 
network unobservable when removed.

§ Multiple bad data: more than one measurement with large error
§ If the residuals are weakly correlated: 𝛀'( ≈ 0, the bad data is 

non-interacting and easier to detect
§ If the residuals are strongly correlated: 𝛀'( is significantly large, 

we have consistent bad data that are more difficult to detect



Recursive SE refers to procedures aiming at obtaining the system 
state at a given time by taking into account information available 
from both measurements and a process model. One of the typical 
techniques adopted in this field is represented by the KF method.

There are more than one versions of the KF method. The Discrete 
Kalman Filter (DKF) is used for linear systems, whereas the Extended 
Kalman Filter (EKF) and the Iterated Kalman Filter (IKF) are used 
when the process to be estimated and/or the measurement 
relationship to the process is non-linear. Since the equations for 
each version are similar, let give the ones that describe the DKF.

The KF consists of a set of equations that implement a “predictor-
measurement update” process that minimizes the estimated error 
covariance - provided that some specific conditions are met.

The Kalman Filter (KF) method



The objective is to estimate the state                  of a discrete-time 
controlled process, governed by the linear stochastic difference equation 
that represents the process model:     
          
                      (34)
where:
§ xt and xt-1 represent the state of the system in correspondence of 

discrete time steps t and t-1, respectively;
§ ut-1 represents a set of uc control variables (independent from the 

system state) of the system at time step t -1;
§ wt-1 represents the system process noise assumed white and with a 

normal probability distribution;
§ A is a (2s-1)x(2s-1) matrix that links that state of the system at time step t-

1 with the one of the current time step t for the case of null active 
injections and process noise;

§ B is a (2s-1) x uc matrix that links the time evolution of the state of the 
system with the uc controls at time step t-1 for the case of null process 
noise.

x t = Ax t−1 +But−1 +w t−1

    x ∈!2n−1

The Kalman Filter (KF) method



The measurement array              is given by the equation we have already 
seen:               
                      (35)

where:

§ the m✕(2s-1) matrix H represents the measurements Jacobian, as 
defined before;

§ vt represents the measurement noise at the same time step t; it is 
assumed white and with a normal probability distribution. vt is also 
assumed independent from wt (clearly,               as zt does).

Similarly to the WLS, the variables vt and wt are assumed to have the 
following normal probability distributions (the mean value μ is equal to 
zero):

                    (36).

z t =Hx t + v t

The Kalman Filter (KF) method
   z ∈!

m

v t ∈ !
m

p(w) ∼ N (0,Q)
p(v) ∼ N (0,R)



The process covariance Q and measurement noise covariance R matrices 
derived from (36) are assumed to be constant. In practice, A might 
change with each time step, but here it is assumed as constant. 
 

Hence, we can define                    as the “a priori” state estimate at step t 
given knowledge of the process prior to step t and                    as the “a 
posteriori” state estimate at step t given the measurement array zt. The “a 
priori” and “a posteriori” estimate errors can be defined as
             
                     (37).

The “a priori” estimate error covariance is

                    (38).

!et ≡ x t − !x t
êt ≡ x t − x̂ t

The Kalman Filter (KF) method

!x t ∈ "
2s−1

x̂ t ∈ !
2s−1

     
!Pt ≡ E[!et !et

T ]



The “a posteriori” estimate error covariance is  
             
                     (39).

Note that in (38) and (39) indicates the expected or mean value 
operator.

The next objective is to find an equation that calculates the “a posteriori” 
state estimate     as a linear combination of an “a priori” estimate       and 
a weighted difference between the actual measurement array zt and the 
measurement prediction          . 

                    (40).

The difference               is called measurement innovation, or 
“measurement residual” and expresses the discrepancy between the 
predicted measurement         and the actual measurement array zt.

The Kalman Filter (KF) method

    P̂t ≡ E[êtêt
T ]

x̂ t !x t

H!x t

x̂ t = !x t +K(z t −H!x t )

(zt −H!x t )

H!x t

 E



The (2s-1) x m matrix K in (40) is called “Kalman Gain” or “blending factor” 
and it minimizes the “a posteriori” error covariance . It is calculated as:
             
                     (41).

The KF method estimates a process by using a kind of feedback: firstly, it 
estimates the process state at some time and then obtains a feedback in 
the form of (noisy) measurements. The KF equations are therefore divided 
in two groups: 
• time-update equations and 
• measurement-update equations. 

The time-update equations are responsible for projecting forward (in time) 
the current state and error covariance estimates in order to obtain the “a 
priori” estimates for the next time step, whereas the measurement-update 
equations are responsible for the feedback, namely for the incorporation 
of new measurements into the “a priori” estimate so as to obtain an 
improved “a posteriori” estimate.

The Kalman Filter (KF) method

K t =
!PtH

T (H !PtH
T +R)−1

P̂t



§ DKF time update equations (“prediction”):
             
                     (42)

         (43).

§ DKF measurement update equations (kind of “correction of the 
estimation”):

                    (44)

         (45)

                    (46).

where I is the identity matrix.

The Kalman Filter (KF) method

!x t = Ax̂ t−1 +But−1

!Pt ≡ AP̂t−1A
T +Qt−1

P̂t ≡ (I−K tH) !Pt

K t =
!PtH

T (H !PtH
T +R)−1

x̂ t = !x t +K t (z t −H!x t )



Example of DKF-based SE (linear)
Since we are targeting ADNs, it is worth reminding that the 
peculiar characteristics of these networks (e.g., high level 
of imbalance of lines, loads, and Distributed Generators) 
require the adoption of 3-phase unbalanced SE process. 
Moreover, the Discrete Kalman Filter (DKF)-SE here 
described relies only on measurements provided by PMUs 
that, as above-mentioned, enable to obtain a 
measurement matrix H consisting of constant elements, 
namely: zeros, ones, and elements of the 3-ph compound 
admittance matrix of the network.



Example of DKF-based SE (linear)
PMUs can measure both nodal voltage and injected 
current synchrophasors. If this is the case, it is possible 
to take advantage of the linear dependence 
between the network state (nodal voltages) and the 
measured injected currents, when the equations are 
written in rectangular coordinates.

x = V1,re
a,b,c ,...,Vs,re

a,b,c ,V1,im
a,b,c ,...,Vs,im

a,b,c⎡
⎣

⎤
⎦
T

The system state for a network with s buses can be 
expressed in rectangular coordinates as:

where
Vi ,re
a,b,c = Vi ,re

a ,Vi ,re
b ,Vi ,re

c⎡
⎣

⎤
⎦

Vi ,im
a,b,c = Vi ,im

a ,Vi ,im
b ,Vi ,im

c⎡
⎣

⎤
⎦

(47)

(48).



Example of DKF-based SE (linear)
HP: measurements coming only from PMUs à the 
measurement set is :
3d1 phase-to-ground voltage phasors;
3d2 injected current phasors;

z = zV ,z I⎡⎣ ⎤⎦
T

Remark: the observability constraints are not 
discussed here (in any case, 2d1+2d2 ≥ 2s).
The measurement set z is:

zV = V1,re
a,b,c ,...,Vd1,re

a,b,c ,V1,im
a,b,c ,...,Vd1,im

a,b,c⎡
⎣

⎤
⎦

z I = I1,re
a,b,c ,...,Id2 ,re

a,b,c ,I1,im
a,b,c ,...,Id2 ,im

a,b,c⎡
⎣

⎤
⎦

where
(49)

(50).



Example of DKF-based SE (linear)
As we have seen, the real and imaginary part of the 
nodal current injections are linked to the system state 
directly via the admittance matrix:

Ii ,re = GilVl ,re − BilVl ,im( )
l=1

s

∑

Ii ,im = GilVl ,im + BilVl ,re( )
l=1

s

∑
where:
§ i  is the bus index;
§ Gil and Bil are the real and imaginary parts of the il 

admittance matrix elements, respectively.

Past (27)



Example of DKF-based SE (linear)
For the case the measurements are composed of nodal 
voltages and nodal-injected/absorbed currents, the 
measurements function H is constant and exact:

 

H =
HV

HI

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

where:
§ HV is the part of the measurement function H that is related to 

the link between the real and imaginary parts of the voltages as 
a function of the state;

§ HI is the part of the measurement function H that is related to the 
partial derivatives of the real and imaginary part of the injected 
currents as a function of the state.

Past (28)



Example of DKF-based SE (linear)

Past (29)-(31)

HV =
β⎡⎣ ⎤⎦ υ⎡⎣ ⎤⎦

ζ⎡⎣ ⎤⎦ η⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

where

β =
1 if  i = l
0 if  i ≠ l

⎧
⎨
⎩

υ =ζ = 0

η =
1 if  i = l
0 if  i ≠ l

⎧
⎨
⎩

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

HI =
Gil⎡⎣ ⎤⎦ −Bil⎡⎣ ⎤⎦

Bil⎡⎣ ⎤⎦ Gil⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥



Example of DKF-based SE (linear)

• K   : “Kalman gain” ;
•      : estimation error covariance matrix ;

Estimation Equations

(1) Computation of the Kalman 
Gain:

(2) Estimation of the state

Prediction Equations

Prediction of the state:
!x t = Ax̂ t−1 +But−1
!Pt ≡ AP̂t−1A

T +Qt−1

K t =
!PtH

T (H !PtH
T +R)−1

x̂ t = !x t +K t (z t −H!x t )

P̂t ≡ (I−K tH) !Pt

where:
•      : prediction error covariance matrix ;!Pt

P̂t

Time-step t



In order to provide an example, let us now suppose to have two 
types of measurements:
§ type-d1  nodes where phase-to-ground voltage phasors are 

measured directly by means of PMUs;

§ type-u1  nodes where active and reactive power injections are 
measured, so that d1+u1 ≥ s.  

Example of IKF-based SE (non-linear)



The resulting measurement array zt is therefore:    
         
                     
         (51).z = δ2 ,...,δd1 ,V1,...,Vd1

zd1! "## $##
,P1,...,Pu1 ,Q1,...,Qd1

zu1! "### $###⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

T

It is worth noting that is has 
deliberately been disregarded the 
problem of network observability 
since it is out of the scope of this 
section. For sake of simplicity the 
measurement Jacobian H is 
formulated as:

H =

          T
∂Pinj
∂δ

       
∂Pinj
∂V

∂Pflow
∂δ

     
∂Pflow
∂V

∂Qinj
∂δ

      
∂Qinj
∂V

∂Qflow

∂δ
    
∂Qflow

∂V
∂Imagn
∂δ

     
∂Imagn
∂V

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=
T
Hs

⎡

⎣
⎢

⎤

⎦
⎥ (52).

Example of IKF-based SE (non-linear)



The (2d1-1)x(2s-1) sub-matrix T, that is composed of the rows of the (2s-1)  
identity matrix corresponding to the type-d1 nodes, allows linking the first part of 
the measurement array      to the system state variables:   
          
                     
         (53).

where       represents the array of uncertainties of the state variables, measured 
by the PMUs. Therefore:

          (54)

and                       (55).

Due to the combination of conventional power measurements and PMU 
measurements the SE provides, in general, more accurate results. However, it is 
important to point out that the number and the location of the measurement 
devices has a strong impact on the SE results.

z t
d1 =Tx t + v t

d1

zt
d1

vt
d1

z t =
T
Hu1

⎡

⎣
⎢

⎤

⎦
⎥

H!

x t + v t

v t =
v t
d1

v t
u1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Example of IKF-based SE (non-linear)


